Selasa, 24 Februari 2009

Bentuk Persamaan Garis

1.Bentuk umum
ax + by + c = 0 atau y = mx + n
2. Persamaan sumbu x ® y = 0
3. Persamaan sumbu y ® x = 0
4. Sejajar sumbu x ® y = k
5. Sejajar sumbu y ® x = k
6. Melalui titik asal dengan gradien m
y = mx

7. Melalui titik (x1,y1) dengan gradien m
y -y1 = m (x - x1)

8. Melalui potongan dengan sumbu di titik (a,0) dan (0,b)
bx + ay = ab
9. Melalui titik (x1,y1) dan (x2,y2)
(y-y1)/(y2-y1) = (x-x1)/(x2-x1)
y-y1 = ((y2-y1)/(x2-x1))(x-x1)

ket :

Persamaan (9) didapat dari persamaan (7) dengan mengganti
m=(y2-y1)/(x2-x1)
Garis ini mempunyai gradien m = (y2-y1)/(x2-x1)

Tidak ada komentar:

Poskan Komentar